Drosophila T Box Proteins Break the Symmetry of Hedgehog-Dependent Activation of wingless
نویسندگان
چکیده
BACKGROUND Segmentation of the Drosophila embryo is a classic paradigm for pattern formation during development. The Wnt-1 homolog Wingless (Wg) is a key player in the establishment of a segmentally reiterated pattern of cell type specification. The intrasegmental polarity of this pattern depends on the precise positioning of the Wg signaling source anterior to the Engrailed (En)/Hedgehog (Hh) domain. Proper polarity of epidermal segments requires an asymmetric response to the bidirectional Hh signal: wg is activated in cells anterior to the Hh signaling source and is restricted from cells posterior to this signaling source. RESULTS Here we report that Midline (Mid) and H15, two highly related T box proteins representing the orthologs of zebrafish hrT and mouse Tbx20, are novel negative regulators of wg transcription and act to break the symmetry of Hh signaling. Loss of mid and H15 results in the symmetric outcome of Hh signaling: the establishment of wg domains anterior and posterior to the signaling source predominantly, but not exclusively, in odd-numbered segments. Accordingly, loss of mid and H15 produces defects that mimic a wg gain-of-function phenotype. Misexpression of mid represses wg and produces a weak/moderate wg loss-of-function phenocopy. Furthermore, we show that loss of mid and H15 results in an anterior expansion of the expression of serrate (ser) in every segment, representing a second instance of target gene repression downstream of Hh signaling in the establishment of segment polarity. CONCLUSIONS The data we present here indicate that mid and H15 are important components in pattern formation in the ventral epidermis. In odd-numbered abdominal segments, Mid/H15 activity plays an important role in restricting the expression of Wg to a single domain.
منابع مشابه
Hedgehog signaling regulates transcription through Gli/Ci binding sites in the wingless enhancer
The segment polarity gene cubitus interruptus (ci) encodes a transcriptional effector of Hedgehog (Hh) signaling in Drosophila. The Ci gene product is a zinc finger protein belonging to the Gli family of sequence-specific DNA binding proteins. After gastrulation, segmental expression of the segment polarity gene wingless (wg) is maintained by Hh signaling in a pathway requiring Ci activity. In ...
متن کاملThe T-box transcription factor Midline regulates wing development by repressing wingless and hedgehog in Drosophila
Wingless (Wg) and Hedgehog (Hh) signaling pathways are key players in animal development. However, regulation of the expression of wg and hh are not well understood. Here, we show that Midline (Mid), an evolutionarily conserved transcription factor, expresses in the wing disc of Drosophila and plays a vital role in wing development. Loss or knock down of mid in the wing disc induced hyper-expre...
متن کاملWingless and Hedgehog pattern Drosophila denticle belts by regulating the production of short-range signals.
The secreted proteins Wingless and Hedgehog are essential to the elaboration of the denticle pattern in the epidermis of Drosophila embryos. We show that signaling by Wingless and Hedgehog regulates the expression of veinlet (rhomboid) and Serrate, two genes expressed in prospective denticle belts. Thus, Serrate and veinlet (rhom) partake in the last layer of the segmentation cascade. Ultimatel...
متن کاملDrosophila segment borders result from unilateral repression of hedgehog activity by wingless signaling.
Body structures of Drosophila develop through transient developmental units, termed parasegments, with boundaries lying between the adjacent expression domains of wingless and engrailed. Parasegments are transformed into the morphologically distinct segments that remain fixed. Segment borders are established adjacent and posterior to each engrailed domain. They are marked by single rows of stri...
متن کاملDrosophila homeodomain-interacting protein kinase inhibits the Skp1-Cul1-F-box E3 ligase complex to dually promote Wingless and Hedgehog signaling.
Drosophila Homeodomain-interacting protein kinase (Hipk) has been shown to regulate in vivo, the stability of Armadillo, the transcriptional effector of Wingless signaling. The Wingless pathway culminates in the stabilization of Armadillo that, in the absence of signaling, is sequentially phosphorylated, polyubiquitinated and degraded. Loss-of-function clones for hipk result in reduced stabiliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 14 شماره
صفحات -
تاریخ انتشار 2004